
Journal of Mathematical Chemistry 23 (1998) 353–364 353

Tagged sets, convex sets and quantum similarity measures
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Tagged and convex sets concepts and definitions are applied with the aim to discover
a general mathematical pattern enveloping the quantum similarity measures framework.
As a consequence, several aspects of the quantum similarity theoretical structure become
beautifully related to a mathematical construction, adopting the form of some interwoven
essential formalism, connecting quantum theory, molecular similarity, convexity and tagged
sets.

1. Introduction

Quantum Similarity Measures (QSM) in the first place [4] and Tagged and Convex
Sets (CS) in the second place [23], constitute two interestingly interconnected fields.
The relationship has to be found in the characteristic definitions, which have been
developed with time in the realm of QSM [6,7,10].

Throughout the recent history, the structure of such QSM theory is always asso-
ciated to integrals involving the description of Quantum Objects (QO).

By a QO must be understood a microscopic system, which possesses all its in-
formation included into an associated Positive Definite (PD) function. Such functional
descriptive power lies in the assignation to the attached PD function of some statistical
probability distribution formalism, the so-called Density Function (DF) [21,22], which,
in turn, is nothing else but a result of the system wavefunction squared module manip-
ulation. Such initial function information, in form of wavefunctions, can be obtained
as a solution of the system’s Schrödinger equation. The whole conceptual structure
may be cast as a quantum mechanical postulate.

Also, besides the PD DF dependence of any QSM, they can be easily attached
to PD operators too, as well as to the functional spaces where PD DF belongs. This
apparent PD mathematical background makes of QSM theory a good candidate to be
related, somehow, to the structure and definitions of convex sets, because the particular
structure of this kind of sets deals, preferentially, with PD linear combinations of vector
space elements.

Here, the role, which could be played by tagged and convex sets definitions, will
be studied within the framework of quantum similarity measures and the related tech-
niques and algorithms. Therefore, the present work will be structured in the following
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manner. In the first place, the appropriate definitions to construct the general theo-
retical background of QSM theory will be given. Then, afterwards, some necessary
notions associated to tagged and convex sets will be provided. The connection be-
tween both subjects will be discussed next. Finally, an application example involving
Quantitative Structure–Activity or Structure–Properties Relationships (QSAR-QSPR)
will be discussed.

2. Quantum Similarity Measures (QSM)

Quantum similarity measures have been defined in several previous papers [8,12],
along with the basic concepts associated to the theoretical body, involving the ideas
underlying the QSM basic integral structure. In order to keep these primary ideas
present at the time to deepen in the QSM theory, several definitions will be given first.

2.1. Definitions

2.1.1. Tagged sets and Quantum Objects (QO)
A parallel definition to the one, associated to Boolean tagged sets, which have

been recently discussed [3], as an alternative to fuzzy sets, will be employed to con-
struct QO Sets (QOS).

A Boolean tagged set, Tn can be defined as the direct product between a given
arbitrary set, S, the background set, and the elements of the 2n bit strings associated
to the integers {0, 1, 2, . . . , 2n − 1}. These bit strings form the vertex vectors of an
n-dimensional unit cube, pointing towards the PD space directions. They constitute
the tag set Kn. Then

Tn = S ×Kn =
{
τ | ∀s ∈ S, ∃ν ∈ Kn: τ = (s, ν)

}
. (D.1)

An interesting example of this Boolean tagged set form, connected to a particular
molecular discrete description, may be briefly discussed. Consider a given set of
molecular structures. Take it as a background set. Construct the attached topological
matrix to every molecule in the background set and order it as a column vector. When
this task is finished, homogenise the dimension of these column topological vectors by,
for instance, adding the appropriate number of zeroes. Take the homogenised column
topological vectors as the tag set. A Boolean tagged set has been defined, in this
manner, over the molecular set.

The Boolean tagged set definition can be easily generalised, considering various
possible tag set extensions. Suppose now known a set of microscopic systems, S, and
let us associate it with a background set. Suppose also a set made of PD DF, P , and
let us call it the tag set. According to quantum mechanics, to every element of S there
can be found a one-to-one correspondence with a DF of P . The situation may be cast
into a new set, a function tagged set, T , defined in the following way:

T = S × P =
{
τ | ∀s ∈ S, ∃ρ ∈ P : τ = (s, p)

}
. (D.2)
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Within this definition, a QOS may be associated to a function tagged set T , and
a QO can be considered in consequence as an element of T .

This structure may be considered as the simplest case of a possible general tagged
set form, which, for the moment, is not relevant here, where definition (D.2) will be
used throughout. In fact, in this possible general definition, QOS may be considered
tagged sets, with the tag set part, formed not only employing a unique function, but
the collection of all the possible DF of the system’s quantum states. The tag, ρ, will
have, from this point of view, necessarily a vector structure, whose elements will be
the state densities. An alternative way could be associated to the tagged set formed
with the elements of the microscopic system background set and one quantum-state
density as the tag part: in this case, the tagged set elements will possess the same
background part and diverse tags.

2.1.2. QSM
Let us define primarily a QSM as a composition involving two QO, constructed

with the rule

∀a, b ∈ T ∧
{
a = (sa, ρa); b = (sb, ρb)

}
:

Zab(ω) ≡ 〈a|ω|b〉 =

∫∫
ρa(r1)ω(r1, r2)ρb(r2) dr1 dr2, (1)

where ω is a PD operator, whose dependence of the variable set {r1, r2} must be
coherent with the ones associated to the tag functions of the involved QO. The case
of computing a QSM when both involved systems are the same, a = b, produces a
Quantum Self-Similarity Measure (QS-SM).

Due to the PD nature of all the involved elements in the QSM, the values of the
measure integrals, described in equation (1), are always positive. Thus, a QSM, as
previously defined, can be considered an operation such as to transform the ordered
pairs of tagged set elements into the set of positive real numbers: Z : (T × T )→ R+.
Integral defined scalar products with weights, associated to the PD operators ω, are
good candidates to be connected to QSM too.

The most usual operator used up to date corresponds to the Dirac’s delta function
δ(r1 − r2), and in this case, integral (1) transforms into a so-called overlap-like QSM.
A third element of the QOS can be used instead, producing several possible forms
of triple QSM [11]. Multiple products of QO substituting the operator will yield a
multiple QSM.

2.2. Similarity matrices and discrete representations of QO

In any case, given a QOS, the computation of QSM involving, at least, element
pairs produces a new set, which has been discussed in the literature in many ways [9].
In the simplest situation, every QO can be connected with the rest of the QOS elements,
including itself. When all the QOS elements are involved in the QSM calculation and
ordered, this gives as a result a symmetric matrix – the Similarity Matrix (SM) Z. The
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dimension of the SM will depend on the cardinality of the QOS: if #(T ) = n, then
Dim(Z) = (n×n). The SM can be considered a row hypermatrix whose elements are
n-dimensional column vectors, collecting all the matrix elements involving a given
QO. That is,

Z = (z1, z2, . . . , zn) ≡ {zi} ⊂ Cn
(
R+
)
. (2)

As it has already been commented, the SM elements are computed within some
kind of scalar product formalism. Owing to the fact that the DF tag part, if the
background set elements are chosen really different, could be considered a linearly
independent function set. Then, the collection of QSM can be easily seen as forming a
metric matrix, computed over the DF tag set, and thus the SM, Z, may be considered
a PD matrix too. This is so, whenever the QSM are calculated with DF bearing the
same orientation in the particle coordinates space, for all matrix elements.

An interesting feature, derived from the PD nature of the DF tag set and from the
resulting QSM, corresponds to the elements of such vectors and matrices: the column
vectors, {zi}, elements are positive too, as represented schematically in equation (2).
Given a QOS, constructed as a function tagged set, as the one previously defined for
QO, and provided the QSM among the elements of the QOS, as defined in equation (1),
equation (2) introduces the possibility to construct another tagged set. This can be
performed employing the following definition, which has a parallel form to the previous
definition (D.2):

Θ = S × Z =
{
θ | ∀s ∈ S, ∃z ∈ Z: θ = (s, z)

}
, (D.3)

where, the symbol for the tag set, Z, has been chosen to be the same as the one used
for the SM. The new vector tagged set is another possible representation of the QOS.
The vector tagged set constructed as in definition (D.3) is immediately connectable
to concepts defined early in the QSM context [9]. Indeed, a QOS in the form of a
vector tagged set has been called, when molecular QOS were studied, a molecular
point cloud, and the elements contained in it, point-molecules.

Vector tagged sets or QO point clouds can be derived from the original function
tagged sets, T , by projecting the PD DF tagged set into a PD vector tagged set:

P(T ) = Θ ⇒
∀τ ∈ T : P(τ ) = P

(
(s, ρ)

)
=
(
s,P(ρ)

)
= (s, z) = θ ∈ Θ. (D.4)

The new projected QOS corresponds to a discrete QO description, where every
system from the background set is no more tagged by a continuous DF, but by an
n-dimensional PD vector. As such, it can be easily transformed into a Boolean tagged
set, according to the comments of previous work [3], based on the evidence of the
usual computational practice. According to this, computations are made within the
field of rational numbers, and as such the numerical QSM involved in the elements
of the tag set part of the QO point cloud, can be associated to this numerical form.
Rational numbers are expressed within a usual computational structure in form of bit
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strings. Already in this numerical form, they can enter as the elements of the tag part
of vector tagged sets, transforming them into the equivalent Boolean tagged sets.

The sets P and the projection Z = P(P ) constitute very peculiar ensembles. In
fact, they are properly defined by elements, which have values only in the PD set of
real numbers. Both correspond to sets whose elements belong to some vector space
with operations defined in R+. The vectorial addition cannot possess a complete group
structure, but a semigroup one instead [16], lacking of reciprocal elements. Everything
else can be considered preserved. One can refer to this kind of structures as vector
semispaces.

3. Convex Sets (CS)

CS can be referred to as vector semispaces for our purposes, although there are
interesting problems related to this concept, which can be easily found in the litera-
ture [23]. A CS is a collection of linear combinations of vectors in a semispace, thus
having positive coefficients, which fulfil an extra constraint such that the coefficient
addition yields the unity. That is, a convex set is a subset K of a semispace H , which
is defined by means of

∀x ∈ K ⊆ H ⇒
∃{ci} ⊂ K ∧ ∃{αi} ⊂ R+: x =

∑
i

αici ∧
∑
i

αi = 1. (D.5)

A curious question can be formulated now about how CS, as defined above, can
be considered made using vectors of a general vector space. Because, whenever a set
of complex numbers is defined such as to form a normalised vector:

{γi} ⊂ C ∧ g = (γ1, γ2, . . . , γn) ∈ Vn(C) ∧ g+g =
∑
i

|γi|2 = 1 ∧

if αi = |γi|2 ∀i ⇒
∑
i

αi = 1. (3)

Then, CS may be constructed from an n-dimensional vector space over the com-
plex field, Vn(C), associating normalised vectors of this general space to the positive
coefficients summing unity of definition (D.5). The squared modules of the general
vector elements are the needed positive coefficients of the CS. Such a vector space,
as Vn(C), may be called a generating vector space of the CS, K. By extension, any
vector g ∈ Vn(C), will be called the generating vector of the attached CS element.

This bears, no doubt, a discrete quantum mechanical flavour. Quantum me-
chanical DF are computed as manipulated squared modules of some complex valued
wavefunction, which can act as a generating ∞-dimensional vector. The generating
vector space of DF is the Hilbert space whose elements are the quantum system’s
wavefunctions.

It must be remarked now that DF constitute some kind of PD functions, admitting
only positive coefficients for linear combination purposes. More than this, the volume
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subtended by any DF shall be finite and constantly equal to some function of the
particle number. In consequence, DF can be, without generalisation loss, considered
normalised to unity possessing a unit volume. Thus, DF could be considered the
elements of a CS defined in a ∞-dimensional space. Indeed, suppose a set of DF,
possessing coherent particle co-ordinates {ρi(r)} ⊂ P , such that ∀i,∫

ρi(r) dr = 1, (4)

and construct a new DF, ϑ(r), using a set of PD coefficients {ci} ⊂ R+:

ϑ(r) =
∑
i

ciρi(r) ⇒ 1 =

∫
ϑ(r) dr =

∑
i

ci

∫
ρi(r) dr =

∑
i

ci. (5)

As a consequence, forcing new linear combinations of DF to have constant unit
volumes is the same as embedding the DF set into a CS structure.

4. Atomic Shell Approximation (ASA) within a CS

Recently, various papers have been devoted to the problem of constructing
properly defined first-order DF, by using spherical function basis set superpositions
[2,14,15]. The so-called ASA has been discussed in various molecular and atomic
environments as well as has been practically studied through several methodological
algorithms. According to the previous generalisation and analysis, the ASA becomes
nothing else than a consequence of the nature of the DF and of the vector semispaces
where they belong.

Indeed, suppose a PD basis set of spherical functions Σ = {σi}, which can be
built up from a normalised function set Φ = {ϕi}. This can be obtained using simply
the equivalence σi = |ϕi|2, ∀i. Taking into account the normalisation conditions of
the functions belonging to the set Φ, the set Σ acquires automatically the property of
unit volume, as commented earlier, when dealing with the CS structure of DF:

1 =

∫ ∣∣ϕi(r)
∣∣2 dr =

∫
σi(r) dr. (6)

Suppose a DF, ρ(r), with an appropriate coherent variable set, r, as the one
associated to the basis function set Σ. The ASA approach consists in expressing the
DF as a CS element generated from the basis set Σ:

∀ρ(r), ∃{ci} ⊂ R+: ρ(r) ≈
∑
i

ciσi ∧
∑
i

ci = 1. (7)

The coefficients {ci} of equation (7), are to be estimated using a constrained
least squares technique. Recently [1], it has been shown how elementary Jacobi rota-
tions [18] can be employed efficiently to deal with this kind of problems. For atoms,
the ASA procedure produces first-order DF with almost negligible quadratic error in-
tegral measures. It has been also investigated whether a promolecular approach can



R. Carbó-Dorca / Tagged sets, convex sets and QSM 359

be constructed as an accurate ersatz for molecular first-order DF. The promolecular
formalism states that the first-order DF tag part for any molecule can be approximated
by a simple sum of atomic ASA functions, computed by means of a constrained least
squares procedure as commented before. Results have shown accurate enough values
for QSM computational purposes [13]. More refined approaches can use a completely
equivalent formalism as in equation (7), using atomic ASA optimal functions as the
components of the basis set Σ.

5. Convex operators

In the previous discussion, related to the ASA approach, the CS nature of the
DF has been fruitful to design an efficient approximate algorithm, so as to obtain
reasonable accurate approaches to first-order DF. From there and from the relationship
between CS and DF, as stated in equation (5), one can try to go beyond the functional
CS and, using the PD operator nature of DF [21,22], extend the previous ideas to PD
sets of operators.

In doing such an extension, the QSM themselves will be affected, being based on
PD operator weighted integrals. The present discussion, from now on, will be devoted
to discuss this extension of the CS framework and, finally, as a corollary, it will be
tried to find out if there is some possible application of the resulting formalism.

5.1. Convex linear combinations of PD operators

Suppose a set of PD operators, Ω = {ωα}. They fulfil the following relationship,
when studied over the coherently defined DF vector semispace P :

Ω =
{
ω | ω :P → R+

}
∧ ∀ω ∈ Ω, ∀ρ ∈ P :

∫
ω(r)ρ(r) dr ∈ R+. (8)

Nothing opposes to consider the following situation:

Ω ⊂ P ⇒ ∀ω, ρ:
∫
ω(r)ρ(r) dr = 〈ω|ρ〉 ∈ R+, (9)

where the application of the PD operator set over the PD DF set can be interpreted
as a non-commutative scalar product, defined over the vector semispace, where both
PD operators and DF sets belong. Moreover, this scalar product can be interpreted
according to the usual quantum mechanical interpretation as the expectation value,
〈ω〉, of the system observable, represented by the particular operator ω in terms of the
QO particular state DF tag part, ρ.

Being possible to consider the operator set, Ω, as forming part of the vector
semispace, P , the situation applied on DF as stated in equation (5) can be used over
the elements of the operator set. In such a manner, if a set of coefficients W = {wα}
exists, and the following constraints, similar to definition (D.5) and equation (7), are
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set upon it, then a linear combination of the operator set Ω will yield a PD operator,
γ, such that

W = {wα} ⊂ R+ ∧
∑
α

wα = 1 ⇒

γ =
∑
α

wαωα: 〈γ|ρ〉 =
∑
α

wα〈ωα|ρ〉 ∈ R+. (10)

The second constraint has been introduced so as to obtain a pattern comparable to
the CS structure of the semispace P and transfer it to Ω, but it is not strictly necessary
to keep this unit coefficient sum, if not needed. The most interesting thing is the
obvious result that PD operators can yield, in a CS environment, new PD operators.

5.2. Tuned QSM, SM and QO descriptors

The previous conservation of the PD property upon linear combinations of PD
operators in a CS environment can be employed in the evaluation of new kinds of
QSM, by constructing a new breed of PD operator weights. The γ-type operators,
appearing in equation (10), can be tuned up, while maintaining the identity of the
operator set, just by changing the values of the CS coefficient set, W , conserving the
initial chosen constraints. A QSM, following the definition provided in equation (1),
can be built up under the circumstances as

Zab(γ) =
∑
α

wαZab(ωα). (11)

The resulting tuned-up SM elements Zab(γ) produce another obvious result when
looking at the SM set, {Z(ωα)}, associated to every operator in Ω. Each SM being
attached to a PD operator, then they can be considered some discrete matrix repre-
sentation of the associated operator in the corresponding basis set of the involved DF.
These matrices, as it has been commented before, can be considered as PD matrices.
Thus, equation (11) can be written in whole matrix form as

Z(γ) =
∑
α

wαZ(ωα). (12)

The resultant matrix being PD, because if in the SM set, Θ = {Z(ωα)}, all the
SM elements are PD, then the following property will hold:

∀x ∈ Cn ∧ ∀Z(ωα) ∈ Θ: x+Z(ωα)x ∈ R+ ⇒
x+Z(γ)x =

∑
α

wαx+Z(ωα)x ∈ R+ if ∀wα ∈ R+. (13)
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From the results above, one can see that a finely tuned set of QO descriptors can
be obtained in this way. This is so due to that equation (12) holds for the SM columns
too, in such a way as

zi(γ) ∈ Z(γ) ∧ zi(ωα) ∈ Z(ωα): zi(γ) =
∑
α

wαzi(ωα). (14)

5.3. Résumé

So, one can shortly describe all the findings and definitions up to now in the
following way: A QOS is chosen in the form of a DF tagged set. A PD set of suitable
operators is used, as a set of weights, in the evaluation of QSM between QO. A set of
SM is thus computed for each operator. A CS with suitable coefficients is chosen to
combine the elements of the SM set. The resultant SM columns are convex descriptors
of the corresponding QO, and provide a discrete vector tagged set representation of
the QOS.

5.4. Finely tuned QSAR

If an immediate application of all the previous development has to be cho-
sen, Quantitative Structure–Activity, or Structure–Property, Relationships (QSAR or
QSPR), is a good candidate field. In our laboratory, the basic theory connecting QSM
and QSAR or QSPR has been developed [5] some time ago and various practical
applications have been reported [17,19,20] recently.

It has been deduced that molecular properties have to be, in some manner, related
with the discrete representation of molecular descriptors furnished by the columns of
SM, constructed from QSM over the molecular QO. As a consequence of equations (9)
and (14), a given property value, π, for a particular molecular QO, described in turn
by a discrete descriptor, z(γ), can be related by means of

π = uTz(γ), (15)

where the vector u corresponds to an unknown discrete representation of some oper-
ator over the same PD DF basis set, used to construct the convex discrete molecular
descriptor z(γ).

The usual procedure is to use a least-squares algorithm in order that, knowing
the pairs {π, z(γ)} for a molecular QOS, the values of u can be obtained. Taking
into account the tuned construction of the vectors z(γ), it can be easily seen that the
vector u will depend on the tuning parameter set. Using the least-squares solution of
the problem

u =
(
Z(γ)TZ(γ)

)−1Z(γ)Tp, (16)

where the vector p = {πk} contains the values of the property for each molecular QO,
and Z(γ) is the SM of the QOS computed according to equation (12). Equation (16),
however, has been written taking into account the possibility that the SM may be no
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longer symmetric, but rectangular. This will constitute the more general case, where
instead of a unique tagged set, two QOS with different cardinalities, m and n, are used
to compute the QSM. The resultant SM will be of dimension m× n.

From this previous definition, one can easily deduce that the vector u will depend
on the tuning coefficients W . Optimisation of the tuning set coefficients W , can be
done at the same time as the classical least-squares problem is solved, keeping in
mind the associated CS constraints, which the tuning set W bears. A parallel non-
linear constrained optimisation on a quadratic function of the W elements will appear.
The interesting feature here is that CS constraints can be studied in the same way as
the CS constraints are kept in the optimal ASA problem. Thus, to the usual least-
squares problem, involving the operator associated vector, u, there appears another
least-squares equation, which starts defining the residual vector

∆ = p− Z(γ)u = p−
∑
α

wαZ(ωα)u = p−
∑
α

wαvα = p− Vw, (17)

where the previous definitions of the involved matrices have been employed. Also, the
matrix V collects the vector set {vα = Z(ωα)u}, and the vector w = {wα} contains
the coefficients of the tuning set W . The residual vector (17) is obviously dependent
on the classical least squares solution u in equation (16). From the inspection of the
residual vector ∆, it is easy to see that the quadratic error will depend on a generalised
quadric function with a variable set formed by the new unknown vector w. This least-
squares problem has to be solved under the constraints associated to the PD nature of
the vector w. A CS constraint structure may be very convenient in order to normalise
the problem form. Thus the quadratic function and the constraints may be written as

ε(2) = χ− 2qTw + wTQw ∧ w ∈ Cn
(
R+
)
∧
∑
α

wα = 1, (18)

where the following simplifications have been used:

χ = pTp ∧ q = VTp ∧Q = VTV. (19)

It is important to remark here the importance to define the appropriate SM set, {Z(ωα)},
in order that the matrix V = {vα} possesses elements linearly independent, to obtain
a PD matrix Q. This is equivalent to saying that the SM set shall provide images of
the least-squares solution u, which must be linearly independent.

The solution of the second optimisation problem for the vector w could be sought
using a generating vector, for example, x, which will substitute the w elements in
the following way: wα = |xα|2, ∀α. Function (18) will transform into a quadratic
function in terms of the components of vector x. Optimisation under the unit norm
of the generating vector, x+x = 1, may be obtained by means of EJR, as in the ASA
case [1].

The whole optimisation process shall be made in an iterative manner:

(1) Using a starting approximate tuning vector w obtain u, solving equation (16).
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(2) Known u, compute a new w, minimising function (18).

(3) Go to (1) while the vector pair {u, w} remains inconsistent with respect to the
previous iteration.

Changing the number and nature of the SM composite Z(γ) will obviously pro-
duce different results, but within a given choice these can be coherently tuned up. This
can add extraordinary possibilities to QSAR procedures.

6. Conclusions

A general framework, where quantum objects can be described in a systematic
way, has been constructed. The concept of density function tagged set encompasses
an earlier generalisation, which was proposed as a sound substitution of fuzzy set
definitions, to describe molecular structures – the Boolean tagged sets. At the same
time, the definition of quantum mechanical density functions has been used in order
to put in evidence its essential positive definite nature. This fundamental property
of density functions, often forgotten in the current literature, has been used too to
connect quantum similarity measures, a simple concept, which compares two or more
quantum objects with the spaces containing positive definite operators. Vector semi-
spaces and, more conventional, convex set algebra has been put into the context of the
computation of approximate density functions, as in the ASA framework. This kind
of computational algorithmic experience has been extended to positive definite oper-
ators and their matrix representation, the similarity matrices, from the point of view
of quantum similarity measures. Positive definite operators can be used to construct a
convex set of new positive definite operators and consequently their matrix representa-
tions remain positive definite. In this way, a new window is opened to obtain discrete,
finely tuned molecular descriptors in the form of positive definite vectors belonging
to n-dimensional vector semispaces. The utility of the presented theoretical results in
the context of quantitative structure–activity relationships is nothing more but one of
the vast prospective application fields.
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